NATIONAL INSTITUTE OF TECHNOLOGY, UTTARAKHAND

Ref.No.:NITUK/TEQIP-III/Procurement/2019/17/(XXVI)/ Date: 18.06.2019

ORDER TO BE PLACED UNDER PROPRIETARY CERTIFICATE

National Institute of Technology, Uttarakhand is going to place order for following software under proprietary article basis. Objection(s) if any, in this regard are called upon at **teqipthird@nituk.ac.in** from party/organization latest by the 9thJuly, 2019 before 05:00 PM.

In case of no objection received from any firm/agency on or before the above mentioned date and time, then order will be placed as under:

S. No.	ltem	Party (Proprietary)	Sole Authorized Distributor in Indiaauthorized to quote/sale/supply the item on behalf of OEM to the Institute doing the procurement or the jurisdiction of area covered	Qty.	Specifications
1.	Ball & Beam	Quanser	Edutech India Pvt. Ltd.	01	enclosed
	Servo	Consulting Inc.,	Crystal Lawn, No 20	(One)	
	Evneriment	119 Spy Court	Haddows Road, Chennai –		
	Experiment				
	Experiment	Markham,	600006, India		

Sd/-Coordinator (TEQIP-III)

Encl:

- 1. Copy of Specification
- 2. Copy of OEM certificate(s)

NATIONAL INSTITUTE OF TECHNOLOGY, UTTARAKHAND

Specifications

S. No.	ltem	Specifications	
	Description		
1.	Ball & Beam	a) Modular Servo Plant : The servo plant shall be ideally	
	Servo	suited to introduce fundamental control concepts and theories	
	Experiment	on an easy-to-use and intuitive platform.	
		The plant should consist of a DC motor in an anodized	
		solid aluminum frame.	
		• The motor should be equipped with a gearbox	
		drives external gears.	
		The servo plant shall be equipped with a potentiometer	
		to measure the output/ angular load.	
		The architecture should be flexible to accommodate	
		attachment of different experimental modules to perform	
		different experiments that can be interchangeably run using	
		the same servo motor.	
		Rigid geared system with direct drive motor (not belt-	
		driven mechanism) to actuate load with minimal controller lag.	
		High quality internal gear-box and re-configurable	
		output gears for achieving different combinations of gear ratios	
		b) Ball and Beam Module: The Ball & Beam module should	
		consists of a steel rod in parallel with a nickel-chromium wire-	
		wound resistor forming the track on which a metal ball is from	
		to roll.	
		The position of the ball should obtainable by measuring	
		the voltage at the steel rod. When the ball rolls along the track	
		• There should a potentiometer like set up on the track	
		which as a wiper resulting in the measurement of the position	
		of the ball.	
		• When coupled to the servo plant, the DC motor should	
		be able to drive the beam such that the motor angle controls	
		the tilt angle of the beam.	
		Technical Specifications of the Ball-beam Module :	
		i. Base Dimensions : not more than 50 cm x 25 cm	
		ii. Mass of the module : Not more than 0.65 Kg	
		iii. Beam length : between 40-45 cm	
		iv. Lever arm length : between 10-13 cm	
		v. Support arm length : between 15-18 cm	

NATIONAL INSTITUTE OF TECHNOLOGY, UTTARAKHAND

	vi. Ball diameter : 2.5 + 0.1 cm
	vii. Ball mass Not more than 65 grams
	viii. Beam sensor bias power : z 12 V
	ix. Beam sensor measurement range : 1 5 V
	c) Data Acquisition Card : The Experiment setup should
	include a Data Acquisition card with the following specifications
	:
	• Multiple OS compatibility and Interrupt support USB for
	the encoder index pulses.
	• Number of I/O shall be : 8 ADCs, 8 DACs ,
	• 8 encoder inputs with 4X quadrature position and 1X
	quadrature velocities
	• 8 PWM ,
	• 8 dgtaNnput
	• DAQ maximum pulse output frequency of 49.766 IHHz.
	DAQ maximum encoder frequency
	• 99.5 NHz in quadrature mode.
	d) Curriculum : Curriculum must include modeling, position
	control, speed control and Ball & Beam. Student workbook,
	teacher workbook and lab setup guide must be provided in
	electronic format on CD.
	• Modeling the electro-mechanical plant of a servo DC
	motor and load shaft, actuator dynamics
	Open-loop and closed-loop analysis
	Frequency response analysis
	• First order system identification using the bump test
	Model validation
	Closed-loop transfer function
	• Using high pass filter instead of direct derivative and
	implications
	• PID control design based on time domain transient and
	steady state specifications (response time, steady state error,
	percentage overshoot)
	 System response to various input types such as square.
	ramp, sine wave, etc.
	Actuator saturation
	Integral action
	Actuator dynamics and modeling
	 PID control design based on time domain transient and steady state specifications (response time, steady state error, percentage overshoot) System response to various input types such as square, ramp, sine wave, etc. Actuator saturation Integral action Actuator dynamics and modeling

NATIONAL INSTITUTE OF TECHNOLOGY, UTTARAKHAND

	•	Transfer function representation of the system
	• (Cascade control design and tuning
	• 9	Stability analysis
	• 1	Lead-Lag compensation design, parameter tuning and
	Bode p	plots
	• 9	Sensor noise
	e) (Other requirements :
	•	The setup should be compatible with MATLAB and
	SIMULI	NK.
	•	The design should be modular with easily-
	intercha	angeable parts.
	• (Open architecture design.
	• \	Windows Single user license for Real-time Control, as
	Rapid C	Control and Prototyping
		Software
	• (On board sensors should include high resolution
	encode	r, potentiometer and on-board tachometer for directly
	measur	ing the output shaft's angular speed.
	• 9	System should include remote ball sensor which allows
	for a m	aster-slave configuration (tele-operation) to control ball
	positio	٦.
	• /	All the components should be compatible with one
	anothe	r.

May 9, 2019

PROPRIETARY ITEM CERTIFICATE

Quanser is the world leader in education and research-based systems for real-time control design and implementation, providing control challenges for all levels of university education and research.

We confirm that the Quanser's solutions are proprietary Control lab systems, incorporating combination of specialized hardware and control software. We are the sole Manufacturers of this system in the world. M/s. Quanser Consulting Inc., 119 Spy Court, Markham, Ontario, CANADA L3R 5H6:

- Quanser Aero
- QBot 2e ground robot
- SRV02 with Ball and Beam

We also confirm that M/s. Edutech India Pvt Ltd 20, 1st Street, Haddows Road, Chennai - 600006, India, is authorized to sell all our products and is our distributor in India.

Please contact the undersigned for any queries on this subject.

Sincerely,

1.0

Thuvishan Rajagulasingam, B.Eng. Academic Solutions Advisor -MEIA Quanser Consulting Inc. <u>Thuvishan.rajagulasingam@quanser.com</u> Tel: +1 (905) 940 3575 ext. 242